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Abstract (150 words) 16 

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression 17 

methods could be used for training gene expression imputation models for TWAS. To leverage 18 

expression imputation models (i.e., base models) trained with multiple reference panels, 19 

regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) 20 

tool which can obtain optimal linear combinations of base models for a given validation 21 

transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power 22 

due to increased effective training sample sizes and borrowed strength across multiple regression 23 

methods and tissues. Leveraging base models across multiple reference panels, tissues, and 24 

regression methods, our studies of Alzheimer’s disease (AD) dementia and Parkinson’s disease 25 

(PD) identified respective 11 independent significant risk genes for AD (supplementary motor 26 

area tissue) and 12 independent significant risk genes for PD (substantia nigra tissue), including 27 

6 novels for AD and 6 novels for PD.   28 

  29 
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Introduction 30 

Two-stage transcriptome-wide association study (TWAS) has been widely used in genetics 31 

studies of complex traits, due to the convenience of using publicly available transcriptomic 32 

reference panels and summary-level genome-wide association study (GWAS) datasets1–5. The 33 

standard two-stage TWAS method6,7 first trains gene expression imputation models (per gene per 34 

tissue) using a transcriptomic reference panel (Stage I), taking quantitative gene expression traits 35 

as response variables and nearby cis- or genome-wide (cis- and trans-) genetic variants as 36 

predictors. The non-zero genetic effect sizes estimated in the gene expression imputation model 37 

are considered effect sizes of a broad sense of expression quantitative trait loci (eQTL), which 38 

are taken as variant weights to conduct gene-based association tests with GWAS data 39 

(individual-level or summary-level) in Stage II.  40 

Various TWAS techniques have been developed, employing diverse regression methods to train 41 

models for imputing gene expression. Additionally, multiple transcriptomic reference panels are 42 

made available to the public and could be used in TWAS. Consequently, it is possible to train 43 

multiple gene expression imputation models by employing distinct regression methods, 44 

employing multiple transcriptomic reference panels of the same tissue type, or utilizing 45 

transcriptomic data from multiple tissues within a given reference panel. For example, multiple 46 

regression methods, such as penalized regression with Elastic-Net penalty (used by PrediXcan7) 47 

and nonparametric Bayesian Dirichlet process regression (DPR) model (used by TIGAR8), have 48 

trained gene expression imputation models using the same Genotype-Tissue Expression (GTEx)9 49 

V8 reference data of 48 human tissue types. The Religious Orders Study (ROS)10, Rush Memory 50 

and Aging Project (MAP)10, and the GTEx9 V8 project all profile transcriptomic data of 51 

prefrontal cortex (PFC) brain tissue and genome-wide genetic data of the same samples, 52 
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providing multiple reference panels of PFC tissue for TWAS. Thus, leveraging multiple trained 53 

gene expression imputation models of the same target gene across multiple regression methods, 54 

reference panels, and tissue types is expected to improve TWAS power, for more robustly 55 

modeling the unknown genetic architecture of the target gene expression by multiple regression 56 

models, having an increased training sample size with multiple reference panels, or borrowing 57 

strength across multiple tissue types with correlated gene expression. 58 

Multi-tissue approaches that can take advantage of transcriptomic reference data for multiple 59 

tissues and/or reference panels have been developed. For example, UTMOST uses group LASSO 60 

penalized multivariate regression to impute cross-tissue expression11. SWAM estimates a vector 61 

of weights for input expression imputation models such that the weighted average of the input 62 

models will give the least square error with respect to individual-level reference expression of 63 

the target tissue12. However, these approaches have drawbacks such as being computationally 64 

expensive and user-unfriendly. UTMOST requires individual-level reference data for all tissues. 65 

In order to control for multicollinearity, a regularization parameter is considered by SWAM, and 66 

needs to be fine-tuned based on the covariance structure of Genetically Regulated gene 67 

eXpression (GReX) of all considered tissues which needs to be derived by using individual-level 68 

transcriptomic data12. Additionally, SWAM requires that trained model input must be in the 69 

same SQL database format as used for PrediXcan output12.  70 

To fill in this gap, we develop a novel TWAS method to leverage multiple summary-level gene 71 

expression imputation models (i.e., base models) trained for the same target gene by the 72 

ensemble machine learning technique of stacked regression13,14. We refer to this novel TWAS 73 

method as Stacked Regression based TWAS (i.e., SR-TWAS). SR-TWAS first uses a validation 74 

transcriptomic dataset of the target tissue type to optimally train a set of weights for the multiple 75 
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expression imputation base models per target gene (Stage I), by optimizing the gene expression 76 

prediction R2 (i.e., the squared correlation between observed and predicted gene expression 77 

levels by the weighted average of multiple base models) in the validation dataset. Then SR-78 

TWAS takes the weighted average eQTL effect sizes as the corresponding variant weights for 79 

gene-based association tests in Stage II. The trained expression imputation models by SR-TWAS 80 

are specific for the tissue type of the validation data, and the identified TWAS risk genes are 81 

interpreted with potential genetic effects mediated through the corresponding gene expression of 82 

the tissue type of the validation data.   83 

With comprehensive simulation studies, we showed that expression imputation models trained 84 

by SR-TWAS had higher prediction accuracy and led to higher TWAS power than base models 85 

across all considered scenarios. SR-TWAS achieves the greatest gains in power over base 86 

models under scenarios in which a gene has a relatively higher proportion of true causal eQTL 87 

with relatively smaller eQTL effect sizes. In the real data validation and application studies using 88 

ROS/MAP and GTEx V8 reference panels and GWAS summary data of Alzheimer’s disease 89 

(AD) dementia and Parkinson’s disease (PD), SR-TWAS also outperformed base models trained 90 

using single reference panels and tissue types. 91 

In the following sections, we first briefly describe the stacked regression method used by SR-92 

TWAS. Then we describe the results of our simulation studies, validation studies using the real 93 

ROS/MAP and GTEx V8 reference panels, as well as application TWAS of AD dementia and 94 

PD. Last, we end with a discussion. 95 

Results 96 

Overview of SR-TWAS 97 
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In the framework of TWAS7,8,15, a multivariable linear regression model is assumed for training 98 

gene expression imputation model, taking quantitative gene expression levels �� of the target 99 

gene and tissue as the response variable and cis-acting genetic variants nearby the target gene 100 

region (genotype matrix �) as predictors, as shown in the following formula:  101 

�� � �� � �, 
�~�
0, 1�. 
The eQTL effect sizes � could be trained by different regression methods and/or using different 102 

reference panels.  103 

Assume there are a total of � base gene expression imputation models trained for the same target 104 

gene, with ��� , � � 1, … , �. Let ��� denote the gene expression levels of the target gene � in the 105 

target tissue type in the validation data, and �� denote the genotype matrix of the same genetic 106 

predictors in the validation data. Then the predicted GReX of the validation samples by the �th 107 

base model are given by �����. The stacked regression method13,14 will solve for a set of optimal 108 

base model weights ��, … , ��, by maximizing the regression �	 between the profiled gene 109 

expression ��� and the weighted average GReX, ∑ ���
�
� �����, of � base models, i.e., 110 

minimizing the following loss function of 1 � �	: 111 

minimize���;��
�,…,��

����� � ∑ ���
�
� �������	

����� � �����	 ,   s.t. ! ��
�

�
�

� 1, �� " #0,1$. 
As a result, we will obtain a set of model weights ��  for � � 1, … , � base models, and a set of 112 

eQTL effect sizes �% given by the weighted average of the eQTL effect sizes of � base models, 113 

�% � ∑ ���
�
� ��� (Stage I). Then the final predicted GReX for test genotype data �� is given by 114 

GReX&
� � ���%, and �% will be taken as variant weights in the gene-based association tests by 115 
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SR-TWAS in Stage II. Genes with 5-fold cross validation (CV) �	 ' 0.5% in the validation 116 

dataset by SR-TWAS are considered as having a valid imputation model and will be tested in 117 

Stage II8. Here, �% is the trained eQTL effect sizes by SR-TWAS (Stage I) for the target gene of 118 

the tissue of the validation data, and identified significant genes from Stage II have potential 119 

genetic effects mediated through the transcriptome of the tissue of the validation data. 120 

 121 

Simulation Studies 122 

By simulation studies, we compared the performance of SR-TWAS with a Naïve approach which 123 

takes the average of base models as the trained gene expression imputation model, that is, taking 124 

�� � �

�
, � � 1, … , �. We used the real genotype data of gene ABCA7 from ROS/MAP and GTEx 125 

V8 to simulate gene expression and phenotypes, and considered multiple scenarios with varying 126 

proportions of causal SNPs (*������ � 
0.001, 0.01, 0.05, 0.1�) and gene expression heritability 127 

(i.e., the proportion of gene expression variation due to genetics, +�
	 � 
0.1, 0.2, 0.5�). We 128 

randomly selected n=465 training samples with Whole Genome Sequencing (WGS) genotype 129 

data from the ROS/MAP cohort and GTEx V8 cohort, respectively. We randomly selected 130 

n=400 and n=800 samples with WGS genotype data from ROS/MAP as our validation and test 131 

cohorts, respectively. Training, validation, and test samples from the ROS/MAP cohort were 132 

simulated with the same causal SNPs (i.e., eQTL), while training samples from the GTEx V8 133 

cohort were simulated with true causal SNPs that were 50% overlapped with the ones for 134 

ROS/MAP samples. The simulated expression heritability was the same for both ROS/MAP and 135 

GTEx V8 samples. 136 
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Two base models per gene were trained by PrediXcan (penalized regression with Elastic-Net 137 

penalty) with the GTEx training samples (n=465), and by TIGAR (nonparametric Bayesian 138 

Dirichlet process regression) with the ROS/MAP training samples (n=465). SR-TWAS and 139 

Naïve models were then obtained by using these trained base models. Validation data (- � 400) 140 

were used to train SR-TWAS models. Gene expression imputation models (by SR-TWAS and 141 

Naïve methods) with 5-fold cross-validation �	 ' 0.5% in the validation cohort were considered 142 

valid models and used for follow-up gene-based association tests. Test data (n=800) were used 143 

for assessing GReX prediction performance and TWAS power, with 1,000 repeated simulations 144 

per scenario. We compared the performance of SR-TWAS, Naïve method, and these two base 145 

models. 146 

As shown in Fig. 1, we showed that SR-TWAS obtained the highest test �	 for gene expression 147 

imputation across all scenarios, with slightly better performance than the base models trained by 148 

TIGAR with ROS/MAP samples (TIGAR_ROSMAP), by leveraging the predictive information 149 

provided by both base models. Both SR-TWAS and the TIGAR_ROSMAP base models 150 

performed better than the Naïve method. The base models trained by PrediXcan with GTEx 151 

samples (PrediXcan_GTEx) performed the worst. This is because all ROS/MAP training, 152 

validation, and test samples are simulated under the same causality model with the same set of 153 

causal SNPs, while GTEx training samples were simulated only with 50% overlapped true causal 154 

SNPs of the validation and test samples. The Naïve approach of taking averages of the base 155 

models had poor performance because of the heterogeneous genetic architecture between the 156 

GTEx training cohort and test cohort. As expected, model performance improved with increasing 157 

true expression heritability +�
	 with the same training sample size. For all considered scenarios, 158 

the highest test �	 were obtained under a sparse causality model with *causal � 0.001, where true 159 
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causal SNP effect sizes would be relatively larger given the same +�
	. CV �	 and training  �	 160 

results for Naïve and SR-TWAS approaches for these scenarios (Supplementary Figures 1-2) 161 

also showed that SR-TWAS outperformed the Naïve approach under all scenarios. 162 

In order to assess TWAS power, phenotypes were simulated with a certain proportion of 163 

variance due to simulated gene expression (+�
	). We considered a series of +�

	  values in the range 164 

of 
0.05, 0.875�. The TWAS power comparison by SR-TWAS, naïve method, and two base 165 

models were shown in Fig. 2, where the results were consistent with the test �	 comparison as in 166 

Fig 1. SR-TWAS performed similarly to the TIGAR_ROSMAP base model, while the Naïve 167 

method performed worse than SR-TWAS and TIGAR_ROSMAP base model but still better than 168 

the PrediXcan_GTEx base model. In particular, SR-TWAS had a noticeable advantage over the 169 

TIGAR_ROSMAP model with  *causal � 0.01 and +�
	 � 0.5. Although desirable TWAS power 170 

~80% was only obtained in simulation scenarios with a relatively high +�
	  that might be higher 171 

than the value in real studies, simulation power would increase along with increased test sample 172 

sizes. Because real GWAS test data would have a larger sample size than the 800 considered in 173 

our simulations, we expect desirable power for our SR-TWAS method in real studies. 174 

Additionally, we conducted similar simulation studies for two other settings, where samples from 175 

ROS/MAP and GTEx cohorts have the same set of true causal SNPs (i.e., the same genetic 176 

architecture), and (i) the expression heritability was the same for both ROS/MAP and GTEx V8 177 

cohorts, or (ii) the expression heritability for GTEx V8 cohort is only half that of ROS/MAP. 178 

The results of these settings were similar to that of the previously described setting. SR-TWAS 179 

and TIGAR_ROSMAP models outperformed the PrediXcan-GTEx and Naïve methods. 180 

Comparisons of CV �	 and training  �	 for Naïve and SR-TWAS approaches for these scenarios 181 

(Supplementary Figures 3, 4, 7, and 8) showed that SR-TWAS outperformed the Naïve approach 182 
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under all scenarios. For all considered scenarios, again the highest test �	 was obtained under a 183 

sparse causality model with high expression heritability (Supplementary Figures 5 and 9). Power 184 

comparison results show that SR-TWAS and TIGAR_ROSMAP models generally outperformed 185 

the PrediXcan-GTEx and Naïve methods (Supplementary Figures 6 and 10), particularly in the 186 

setting in which the expression heritability for GTEx V8 cohort was only half that of ROS/MAP 187 

(Supplementary Figure 10). 188 

We also assessed type I error under the example scenario with *causal � 0.1, +�
	 � 0.1. Base 189 

model weights were permuted 10� times and used to train SR-TWAS and Naïve models, which 190 

were then used to conduct gene-based association tests with a phenotype generated randomly 191 

from �
0, 1�. All methods control well for type I errors for significance thresholds 192 


10��, 10��, 2.5 1 10��, 10���, as shown in Supplementary Table 1. Type I errors for Naïve 193 

method were comparable to that of the base models, while SR-TWAS had the lowest type I error 194 

under all significance thresholds. 195 

 196 

Real Validation Studies  197 

To compare the GReX prediction accuracy with real gene expression data, we considered three 198 

base models that were trained by TIGAR with ROS samples (n=237, TIGAR_ROS_DLPFC) for 199 

dorsolateral prefrontal cortex (DLPFC) tissue, trained by TIGAR with GTEx V8 data of the 200 

brain frontal cortex tissue8 (n=157, TIGAR_GTEx_BRNCTXB), and trained by PrediXcan with 201 

the same GTEx reference data of brain frontal cortex tissue (n=157, 202 

PrediXcan_GTEx_BRNCTXB)7. SR-TWAS (SR-TWAS_MAP_DLPFC) and Naïve 203 

(Naive_MAP_DLPFC) models were trained from these three base models with respect to a 204 
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validation dataset with half MAP samples (n=114, randomly selected) of DLPFC tissue. Valid 205 

gene expression imputation models trained by SR-TWAS and Naïve methods with 5-fold CV 206 

�	 ' 0.5% in validation data were tested using the other half MAP samples (n=114) of DLPFC 207 

tissue.  208 

By comparing test �	 obtained by SR-TWAS, Naïve, and three base models (Supplementary 209 

Table 2), we showed that PrediXcan_GTEx_BRNCTXB had the highest median (0.070) and 210 

mean (0.113) test �	 but only for 867 valid gene expression imputation models, SR-TWAS had 211 

the second highest median (0.026) and mean (0.068) test �	 for 8425 valid genes expression 212 

imputation models, and Naïve model performed similarly as SR-TWAS but with a slightly lower 213 

median (0.025) and mean (0.065) test �	 and fewer valid genes expression imputation models 214 

(8360). By pair-wise comparison of test �	 for all genes with valid expression imputation 215 

models as shown in Supplementary Figure 11, SR-TWAS (y-axis) performed noticeably better 216 

than Naïve and three base models (x-axis).  217 

 218 

Application TWAS of AD Dementia 219 

Training expression imputation models of SMA tissue by SR-TWAS 220 

We considered four base models –– TIGAR and PrediXcan models trained with 465 ROS/MAP 221 

samples of DLPFC tissue (TIGAR_ROSMAP_DLPFC, PrediXcan_ROSMAP_DLPFC), TIGAR 222 

and PrediXcan models trained with 157 GTEx V8 samples of prefrontal cortex tissue 223 

(TIGAR_GTEx_BRNCTXB, PrediXcan_GTEx_BRNCTXB). Additional 76 ROS/MAP samples 224 

of the supplementary motor area (SMA) brain tissue were used as the validation dataset to train 225 

SR-TWAS models and to calculate the 5-fold CV �	 that was used to select genes with valid 226 
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imputation models. Here, we compared SR-TWAS to base models trained by two different 227 

regression methods as used by TIGAR and PrediXcan, as well as models trained by TIGAR 228 

using the validation data of the target SMA brain tissue (TIGAR_ROSMAP_SMA), to show the 229 

advantages of SR-TWAS about leveraging multiple regression models, reference panels, and 230 

multiple tissues.  231 

By comparing the CV �	 and numbers of genes with valid expression imputation models 232 

obtained by SR-TWAS and 4 base models (Table 1), we found that gene expression imputation 233 

models trained by SR-TWAS for the SMA tissue (SR-TWAS_ROSMAP_SMA) had the highest 234 

median CV �	 (~0.07) and second highest mean CV �	 (0.09) for ~20K genes with valid 235 

expression imputation models. Although the PrediXcan_GTEx_BRNCTXB base model had third 236 

highest median CV �	 (0.061) and highest mean CV �	 (0.10), but only for 4563 genes with 237 

valid expression imputation models. The TIGAR_ROSMAP_SMA models with the lowest 238 

sample size of the single-cohort models (n=76), had the greatest number of trained genes 239 

(32350), second highest median CV �	 (0.064), and second highest mean CV �	 (0.076), which 240 

is consistent with overfitting trends in model training as observed in previous studies8. These 241 

results showed that improved CV �	 in a real validation cohort of SMA tissue was obtained by 242 

SR-TWAS, by leveraging multiple regression methods from two reference panels of multiple 243 

relevant tissues (DLPFC and frontal cortex tissues).  244 

TWAS results of AD dementia 245 

By using the eQTL weights obtained by SR-TWAS using the above four base models and SMA 246 

validation data and TIGAR models trained using the SMA validation data, we conducted TWAS 247 

with the summary-level data of the most recent GWAS of AD dementia (n=~762K)16. SR-248 
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TWAS identified a total of 56 significant TWAS risk genes of AD dementia with p-values < 249 

2.5 1 10��. Of these, 17 are known GWAS risk genes, 39 are within 1MB of a known GWAS 250 

risk gene, and 19 have been previously identified as TWAS risk genes of AD dementia17–22 251 

(Supplementary Table 3).  252 

Because TWAS considers genotype data within a 21MB region of a test gene, nearby significant 253 

TWAS genes with overlapping test regions often have correlated GReX values and might not 254 

represent independent associations. We curated 11 independent TWAS risk genes of AD from 255 

these 56 significant genes (Table 2, Fig. 3), by selecting the most significant gene as the 256 

independent risk gene for a cluster of significant genes with overlapped test regions. We found 257 

that 6 of these independent risk genes were novel TWAS risk genes (AC073842.1, DMPK, 258 

FAM13C, GFAP, PPP1R9B , and SLC15A3), 4 were known GWAS risk genes (ACE18,23,24, 259 

CR116,18,19,24,25, HLA-DRA19,24, and TREM216,19,24,26), and 5 were previously identified as TWAS 260 

risk genes (ACE17, CR117, HLA-DRA18, TREM221, and ZSCAN2618). Importantly, 3 out of these 261 

11 independent risk genes were also identified by TIGAR with ROSMAP SMA validation data 262 

(TIGAR_ROSMAP_SMA). Compared to the TWAS results using individual base models 263 

(Supplementary Figure 12), both SR-TWAS and TIGAR_ROSMAP_SMA models identified a 264 

greater number of independent risk genes. 265 

Interestingly, ACE is a protein-coding gene involved in the regulation of blood pressure and 266 

cerebral blood flow. Gene CR1 encodes a complement system protein that may play a role in 267 

amyloid beta (an important AD pathology) clearance25, which was also identified by previous 268 

Mendelian randomization studies18. Gene HLA-DRA is located in the major histocompatibility 269 

complex region that is expressed in glial cells27 and which has also been previously identified by 270 

eQTL analysis19. Gene TREM2, which encodes membrane receptor in microglia and other 271 
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immune cells and may be related to chronic inflammation26, is also a known risk gene of AD 272 

identified by eQTL colocalization24. Gene ZSCAN26, near the known GWAS risk gene OR2B228 273 

and identified by previous TWAS18, is a protein-coding gene predicted to be involved in DNA-274 

binding of transcription factors and regulation of transcription. 275 

The other 6 independent significant TWAS risk genes (AC073842.1, DMPK, FAM13C, GFAP, 276 

PPP1R9B, and SLC15A) identified by SR-TWAS are within 1MB of known GWAS risk 277 

genes16,18,19,24,28,29, with the former 5 also being within 1MB of a previously identified TWAS 278 

risk gene17,18 and the latter identified by TWAS18. AC073842.1 is a long non-coding RNA gene 279 

located near GWAS risk gene AP4M118 (also identified by SR-TWAS as a significant TWAS 280 

risk gene), and known TWAS risk gene PMS2P117. SR-TWAS also identified 8 other genes in 281 

this region (see Supplemental Table 3), all of which were also within 1MB of PMS2P1. DMPK 282 

was the most significant association of a cluster of 29 genes in the same overlapped test region 283 

identified by SR-TWAS, whose test region overlaps with the well-known GWAS risk gene 284 

APOE16,18,19,23,25,28. A pathogenic repeat expansion in a noncoding region of DMPK causes 285 

myotonic dystrophy 1 (DM1), a multi-system disease which includes brain involvement30. 286 

Studies of brain pathology in DM1 patients have found associations between DMPK and the AD-287 

related genes MAPT, APP, and SNCA30. FAM13C is a protein-coding gene which has been found 288 

to be an independent prognostic marker in prostate cancer31, a malignancy associated with AD32. 289 

The protein product of GFAP is expressed on glial cells and has been used as a biomarker of 290 

astrocyte activation and inflammation27,33. Multiple studies of GFAP note its potential as a 291 

prognostic biomarker for predicting future dementia33. Pereira, et al found that plasma levels of 292 

GFAP protein had greater performance as a predictive biomarker of amyloid-β positivity than the 293 

TREM2 protein33. PPP1R9B encodes the protein spinophilin that is expressed in dendritic spines 294 
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and linked to AD progression34,35. Further, mouse models of AD have found TREM2 to be an 295 

important regulator of spinophilin expression36. 296 

Additionally, SLC15A3 is located in the AD-associated MS4A gene cluster29, which contains 297 

multiple known GWAS risk genes16,18–20 as well as TWAS risk gene MS4A217 of AD. The MS4A 298 

gene cluster is notable due its role in the regulation of soluble TREM2 in cerebrospinal fluid in 299 

AD29. SLC15A3 encodes a protein that enables transmembrane transport of histidine and di-300 

/tripeptides across cell membranes and may play a role in the innate immune response and 301 

inflammation37. It has been recently identified as a differentially expressed gene in AD22.  302 

 303 

Application TWAS of PD 304 

Training expression imputation models of brain substantia nigra tissue by SR-TWAS 305 

We considered six base models trained by TIGAR on six different tissues from GTEx V8 –– 306 

brain anterior cingulate cortex BA24 (BRNACC) (n=136), brain caudate basal ganglia 307 

(BRNCDT) (n=173), brain cortex (BRNCTXA) (n=184), brain nucleus accumbens basal ganglia 308 

(BRNNCC) (n=182), brain putamen basal ganglia (BRNPTM) (n=154), and whole blood 309 

(BLOOD) (n=574). An additional 101 GTEx samples of brain substantia nigra (BRNSNG) tissue 310 

were used as the validation data to train SR-TWAS models and to calculate the 5-fold CV �	 311 

that was used to select genes with valid expression imputation models. TIGAR models were also 312 

trained on the validation data of brain substantia nigra tissue (TIGAR_GTEx BRNSNG) to 313 

compare TWAS results with that of SR-TWAS.  314 

TWAS Results of PD 315 
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Besides AD, we also conducted TWAS using GWAS summary statistics by the most recent 316 

biggest studies of PD (n=~33K cases, ~18k UK Biobank proxi-cases, and ~828K controls)38, 317 

where the eQTL weights obtained by the above SR-TWAS models based on six base models of 318 

multiple tissues and validation data of brain substantia nigra tissue and 319 

TIGAR_GTEx_BRNSNG models were used. As a result, SR-TWAS identified a total of 62 320 

significant TWAS risk genes of PD. Of these, 15 are known GWAS risk genes, 42 are within 321 

1MB of a known GWAS risk gene, and 17 have been previously identified as TWAS risk genes 322 

of PD (Supplementary Table 4).  323 

Similarly, from these 62 risk genes, we curated 12 independent TWAS risk genes of PD (Fig. 4; 324 

Table 3), including 5 novel TWAS risk genes (IDUA, LA16c-385E7.1, LRRC37A4P, 325 

SHROOM3, and SLC30A3). Of these novel TWAS risk genes, three (IDUA, LRRC37A4P, 326 

SHROOM3) are near known GWAS risk genes (GAK38, FAM47E38, MAPT38). The other 7 327 

known TWAS risk genes were also known GWAS risk genes (CD3839,40, GPNMB38,40, 328 

MMRN138,39, NDUFAF238,  RAB2938,40, VKORC1, and ZSWIM739). Importantly, 2 of these 329 

independent significant TWAS risk genes (GPNMB38,40, MMRN138,39) were also identified by the 330 

TIGAR_GTEx_BRNSNG models. Compared to the TWAS results using these six base models 331 

(Supplementary Figure 13), SR-TWAS models still identified the greatest number of 332 

independent risk genes while the TIGAR_GTEx_BRNSNG models identified the fewest. 333 

Defects in IDUA are known to cause the lysosomal storage disorder Hurler syndrome; lysosomal 334 

mechanisms are thought to play a role in PD pathogenesis; and lysosomal storage disorder gene 335 

variants have been associated with increased PD risk41. NDUFAF2 encodes for a component of 336 

mitochondrial complex I and loss of its functionality results in a rare mitochondrial 337 

encephalopathy with frequent substantia nigra pathology and motor symptoms42. NDUFAF2 was 338 
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also identified as a potential drug target in a Mendelian randomization study of potential drug 339 

targets for PD treatment43. SHROOM3 is involved in neural tube development, cell shape, and 340 

epithelial morphogenesis and variants which alter its expression have been implicated in chronic 341 

kidney disease44, which shares pathophysiological mechanisms with PD and has been shown to 342 

increase PD risk45. Synaptic Zn2+ has been implicated in the pathophysiology of PD and the 343 

only known transporter of Zn2+ into synaptic vesicles, ZnT3, is the protein product of 344 

SLC30A346. ZSWIM7 has been identified as a TWAS risk gene39. The protein product of 345 

VKORC1 is an important component of normal blood coagulation and is targeted by the 346 

anticoagulant drug warfarin43. VKORC1 was also identified by Mendelian randomization as a 347 

potential drug target in PD treatment43. 348 

LRRC37A4P is a pseudogene near a known TWAS risk gene LRRC37A239 (also identified by 349 

SR-TWAS). CD38 is involved in neurodegeneration, neuroinflammation, and aging39,47. 350 

GPNMB codes for a glycoprotein observed upon tissue damage and inflammation48, and the 351 

GPNMB protein has been found to be elevated in PD patients after lysosomal stress48. MMRN1 is 352 

a carrier protein for platelet factor V and lies 384KB downstream of a well-established GWAS 353 

risk locus found in multiple populations38. RAB29 has been implicated as a regulator of PD-354 

associated LRRK249.  355 

 356 

Discussion 357 

We present a novel TWAS tool (SR-TWAS) using the ensemble machine learning technique of 358 

stacked regression 13,14,50, for leveraging multiple gene expression imputation models trained by 359 

different regression methods and/or using different transcriptomic reference panels of different 360 
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tissue types. We demonstrated the advantages of SR-TWAS through comprehensive simulation 361 

studies, testing gene expression prediction accuracy in real data, and real TWAS of AD dementia 362 

and PD. We showed that SR-TWAS outperformed the Naïve method, base models, and models 363 

trained using a single reference panel of the target tissue, especially when base models are 364 

trained by diverse regression methods and reference panels of different tissue types. Our results 365 

show similar strength to previous studies using stacked regression in other fields14.   366 

Especially, in the real application TWAS of AD dementia and PD, SR-TWAS identified a 367 

greater number of total independent risk genes than any of the base models and similar or greater 368 

number than models trained using a single reference panel of the target tissue. Besides known 369 

GWAS/TWAS risk genes, or nearby known GWAS/TWAS risk genes, that were identified by 370 

SR-TWAS, we also found 6 novel independent TWAS risk genes for AD dementia and 6 novel 371 

independent TWAS risk genes for PD with known functions in respective disease pathology. 372 

Additionally, we found interesting biological interpretations relevant to AD dementia and PD for 373 

our identified TWAS risk genes. These application TWAS results indeed showed the robust and 374 

practical useful performance of our SR-TWAS tool.  375 

The SR-TWAS tool, including the Naïve method as an option, is publicly available on GitHub. 376 

The SR-TWAS tool implements user-friendly features, including accepting genotype data of 377 

standard VCF-format as input, enabling parallel computation, and using efficient computation 378 

strategies to reduce time and memory usage. The most computation expensive part is to train all 379 

base models with different reference panels, which is subject to the regression method. For 380 

example, with training sample size n=465, PrediXcan (Elastic-Net) costs ~1 CPU minute and 381 

TIGAR (DPR) costs ~3 CPU minutes in average per gene. Publicly available trained models can 382 

also be used as base models by the SR-TWAS tool. The process of training SR-TWAS models 383 
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from base models and validation data is quite computational efficient. For example, with the 384 

ROS/MAP SMA tissue validation dataset (n=76) and four base models in our real studies, SR-385 

TWAS model training costs ~15 CPU seconds per gene. With the GTEx substantia nigra tissue 386 

validation dataset (n=101) and six base models in our real studies, SR-TWAS model training 387 

costs ~103 CPU seconds per gene. 388 

SR-TWAS still has its limitations. For example, SR-TWAS only considers cis-eQTL during 389 

model training, uses the standard two-stage TWAS, requires an additional validation dataset of 390 

the target tissue independent of those used for base model training14, and assumes samples of the 391 

validation dataset and test GWAS cohort are of the same ancestry51. Previous studies have 392 

illustrated the importance of considering both cis- and trans- eQTL in TWAS52, and a joint 393 

modeling of the gene expression imputation and the gene-based association test53 54. The stacked 394 

regression technique used by SR-TWAS also applies to scenarios considering both cis- and 395 

trans- eQTL, when base models trained with both cis- and trans- eQTL are available. Using the 396 

recently developed variance component gene-based association test55 in Stage II is expected to 397 

help account for the uncertainty of eQTL effect sizes estimation in the reference panel, a 398 

common issue for the two-stage TWAS methods.    399 

Overall, the SR-TWAS tool provides a useful resource for researchers to take advantages of the 400 

publicly available gene expression imputation models by using multiple regression methods 401 

(e.g., PrediXcan7, FUSION15, TIGAR8) and different reference panels of multiple tissue types 402 

(e.g., ROS/MAP10, GTEx9). In particular, the final trained gene expression imputation model by 403 

SR-TWAS will be with respect to the same tissue type as the validation data set. Because 404 

multiple base models would not only increase the robustness of the gene expression imputation 405 
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model but also increase the total effective training sample size, SR-TWAS is expected to further 406 

increase TWAS power for studying complex human diseases.    407 
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Table 1. Comparison of CV 4� of SMA tissue for valid gene expression imputation models 417 
trained by SR-TWAS, TIGAR with validation data, and four base models with ROS/MAP 418 
and GTEx V8 reference panels of DLPFC tissue.  419 

 
Sample Size Median CV �� 

Mean 
CV �� 

�genes 

PrediXcan_GTEx_BRNCTXBa 157 0.061 0.100 4563 
PrediXcan_ROSMAP_DLPFCa 465 - - 6532 
TIGAR_GTEx_BRNCTXBa 157 0.038 0.065 21921 
TIGAR_ROSMAP_DLPFC a 465 0.016 0.048 11981 
TIGAR_ROSMAP_SMA 76 0.064 0.076 32350 
SR-TWAS_SMA - 0.072 0.090 20216 
a base model used by SR-TWAS 420 
 421 
 422 

Table 2. Independent TWAS risk genes of AD dementia identified by SR-TWAS. 423 

    SR-TWAS TIGAR 
    SMA SMA 
Gene CHR Start End Zscore Pvalue Zscore Pvalue 
CR1��  1 207496147 207641765 -7.30 2.91e-13 -2.64 8.17e-03 

ZSCAN26��  6 28267010 28278224 4.71 2.50e-06 -3.56 3.69e-04 

HLA-DRA��  6 32439878 32445046 -6.88 5.93e-12 -0.00 9.98e-01 

TREM2��  6 41158506 41163186 5.42 6.05e-08 4.00 6.38e-05 

AC073842.1��  7 100130964 100140439 5.86 4.54e-09 -5.09 3.65e-07 

FAM13C��  10 59246130 59363181 -4.87 1.13e-06 3.49 4.83e-04 

SLC15A3��  11 60937084 60952530 -7.57 3.82e-14 -4.74 2.11e-06 

GFAP��  17 44903159 44916937 -4.73 2.21e-06 -1.03 3.05e-01 

PPP1R9B��  17 50133737 50150677 5.11 3.15e-07 -3.59 3.25e-04 

ACE��  17 63477061 63498380 5.05 4.44e-07 -1.66 9.69e-02 

DMPK��  19 45769717 45782552 16.52 2.79e-61 -11.18 5.21e-29 

a known GWAS risk gene of AD. 424 
b gene within 1MB of known GWAS risk gene of AD. 425 
c previously identified TWAS risk gene of AD. 426 
d gene within 1MB of previously identified TWAS risk gene of AD. 427 
 428 

  429 
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Table 3. Independent TWAS risk genes of Parkinson’s disease identified by SR-TWAS. 430 

 SR-TWAS TIGAR 
 BRNSNG BRNSNG 
Gene CHR Start End Zscore Pvalue Zscore Pvalue
RAB29��  1 205767986 205775460 -5.30 1.17e-07 -4.17 3.06e-05

SLC30A3 2 27254572 27275817 -4.95 7.56e-07 -0.74 4.62e-01

IDUA��  4 986997 1004506 5.77 7.98e-09 4.05 5.09e-05

CD38��  4 15778275 15853230 7.68 1.57e-14 2.10 3.59e-02

SHROOM3��  4 76435100 76783253 5.17 2.32e-07 1.85 6.48e-02

MMRN1��  4 89879532 89954629 -7.91 2.55e-15 -8.50 1.95e-17

NDUFAF2��  5 60945129 61153037 -5.45 4.91e-08 -3.71 2.10e-04

GPNMB��  7 23235967 23275108 -5.52 3.31e-08 -5.11 3.28e-07

LA16c-385E7.1 16 1512979 1514675 -4.81 1.50e-06 -2.40 1.64e-02

VKORC1��  16 31090842 31095980 -5.56 2.75e-08 -3.60 3.22e-04

ZSWIM7� 17 15976560 15993830 -5.32 1.04e-07 -4.13 3.59e-05

LRRC37A4P��  17 45506741 45550335 -9.41 4.98e-21 -9.13 6.85e-20

a known GWAS risk gene of PD. 431 
b gene within 1MB of known GWAS risk gene of PD. 432 
c previously identified TWAS risk gene of PD. 433 
d gene within 1MB of previously identified TWAS risk gene of PD. 434 
 435 
  436 
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Figures 437 

 438 

Figure 1. Boxplots of gene expression prediction 4� for simulations with varying 439 
proportion of true causal SNPs 5causal � 
6. 667, 86. 67, 86. 69, 86. 7� and true expression 440 
heritability :�

� � 
6. 7, 86. ;, 86. 9�. SR-TWAS performed comparably as the TIGAR_ROSMAP 441 
base model, but consistently better than the Naïve and PrediXcan_GTEx base models. This is 442 
because test samples are simulated under the same genetic architecture as the ROSMAP training 443 
cohort used by TIGAR_ROSMAP and the validation cohort used by SR-TWAS, which only 444 
have 50% overlapped true causal SNPs as the GTEx training cohort used by PrediXcan_GTEx. 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 
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 454 

Figure 2. Power comparison for simulations with varying proportion of true causal SNPs 455 *causal � 
0.001, 80.01, 80.05, 80.1�, true expression heritability +�
	 � 
0.1, 80.2, 80.5�, and 456 

phenotype heritability +�
	 " 
0.05,0.875�. SR-TWAS performed comparably as the 457 

TIGAR_ROSMAP base models trained using ROSMAP training cohort, but consistently better 458 
than the Naïve method and PrediXcan_GTEx base models trained using GTEx training cohort. 459 
This is because test samples are simulated under the same genetic architecture as the ROSMAP 460 
training cohort and the validation cohort used by SR-TWAS, which only have 50% overlapped 461 
true causal SNPs as the GTEx training cohort. 462 

 463 
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471 

Figure 3. Manhattan plots of TWAS results by SR-TWAS and TIGAR models trained for 472 
the target SMA tissue for studying AD dementia. TIGAR models were trained using the 473 
validation data as used by SR-TWAS method. A total of 56 (11 independent) TWAS risk genes 474 
were identified by SR-TWAS, and 3 out of these 11 independent genes were also identified by 475 
TIGAR models. Significant genes are shown in orange and significant genes that are labeled and 476 
discussed in the text are shown in red.  477 
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488 

Figure 4. Manhattan plots of TWAS results by SR-TWAS and TIGAR models trained for 489 
the target substantial nigral tissue for studying Parkinson’s Disease. TIGAR models were 490 
trained using the validation data as used by SR-TWAS method. A total of 62 (12 independent) 491 
significant TWAS risk genes were identified by SR-TWAS, and 3 of these 12 independent genes 492 
were also identified by TIGAR models. Significant genes are shown in orange and significant 493 
genes that are labeled and discussed in the text are shown in red.  494 

 495 
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Methods 497 

SR-TWAS using Stacked Regression 498 

Stacked regression is a machine learning method for forming optimal linear combinations of 499 

different predictors to improve prediction accuracy14. The theoretical background for combining 500 

predictors rather than selecting a single best predictor is well-established and has been developed 501 

since the 1970s14,56,57. The "stacking" method of combining predictors originated in a 1992 502 

paper13 by Wolpert, who described the concept as any scheme for feeding information from a set 503 

of cross-validated models to another before forming the final prediction in order to reduce 504 

prediction error13. The idea is further expanded with stacked regression, a specific framework for 505 

combining the initial predictors by weighted average with coefficient constraints to control for 506 

multicolinearity14. 507 

In standard two-stage TWAS, we need to first fit a gene expression imputation model, which is 508 

assumed as a multivariable linear regression model, with quantitative gene expression levels �� 509 

for the target gene and tissue type as the response variable, and genotype matrix � of 510 

nearby/genome-wide SNPs as predictors,  511 

�� � �� � �, 
�~�
0, 1�.  
This gene expression imputation model can be trained per gene per tissue type, using a 512 

transcriptomic reference panel which profiles both transcriptomic and genetic data of the same 513 

training cohort. SNPs with non-zero effect sizes � are referred to as a broad sense of eQTL. The 514 

eQTL effect sizes � will be estimated from each trained model by different regression methods 515 

and/or using different reference data of multiple tissue types.  516 

Assume there are a total of � base gene expression imputation models that are trained for the 517 

same target gene and tissue type, with ��� , � � 1, … , �, as the trained eQTL effect sizes per base 518 
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model. Let ��� denote the gene expression levels of the same target gene � and tissue type in the 519 

validation data, and �� denote the genotype matrix of the same genetic predictors in the 520 

validation data. Then the predicted Genetically Regulated gene eXpression (GReX) of the 521 

validation samples are given by �����, by the �th base model. The stacked regression 522 

method13,14 will solve for a set of optimal model weights ��, … , ��, by maximizing the regression 523 

�	 between the profiled gene expression ��� and the weighted average GReX, ∑ ���
�
� �����, of 524 

� base models, ie, minimizing the following loss function of 1 � �	: 525 

minimize���;��
�,…,��

����� � ∑ ���
�
� �������	

����� � �����	 ,   s.t. ! ��
�

�
�

� 1, �� " #0,1$. 
As a result, we will obtain a set of model weights ��  for � � 1, … , � base models, and a set of 526 

eQTL effect sizes �% given by the weighted average of the eQTL effect sizes of � base models, 527 

�% � ∑ ���
�
� ��� (Stage I). Then the final predicted GReX for test genotype data �� is given by 528 

GReX&
� � ���%, and �% will be taken as variant weights in the gene-based association tests by 529 

SR-TWAS in Stage II.  530 

Genes with 5-fold CV �	 ' 0.5% in the validation dataset by SR-TWAS are considered as 531 

having a valid imputation model and will be tested in Stage II. That is, the validation dataset will 532 

be randomly split into 5 folds. For each fold of data, SR-TWAS model will be trained using the 533 

other 4-fold data and then use to calculate prediction �	 with the current fold. The average 534 

prediction �	 across all 5 folds of data is considered as the 5-fold CV �	. Here, we use a more 535 

liberal threshold (0.005) than the threshold 0.01 used by previous studies 15,58,59 to allow more 536 

genes to be tested in follow-up TWAS. Because the follow-up gene-based association Z-score 537 

test statistic is essentially a weighted average of single variant GWAS Z-score statistics with 538 
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variant weights provided by the eQTL effect sizes8, poorly estimated eQTL weights would only 539 

reduce power but will not increase false positive rate under null hypothesis. 540 

 541 

Naïve Method 542 

In this paper, we compared SR-TWAS to a Naïve approach which just takes the average of base 543 

models as the trained gene expression imputation model, that is, takes �� � �

�
, � � 1, … , �. 544 

Using a validation dataset, we can still evaluate the validation �	 which can be used to select 545 

valid genes with validation �	 ' 0.5%.  546 

 547 

SR-TWAS Tool Framework 548 

SR-TWAS tool was designed to be compatible with the TIGAR-V2 tool framework8; it accepts 549 

models trained by TIGAR-V2 as input, imports utility functions from TIGAR-V2, and outputs 550 

model files which can be used as input for TIGAR-V2 GReX prediction and summary-level 551 

TWAS. Much of the structure of the SR-TWAS code was derived from existing TIGAR-V2 552 

scripts and it shares dependencies on TABIX60 and the Python libraries of numpy61,62, pandas61, 553 

scipy63, statsmodels64, and scikit-learn65,66. 554 

The SR-TWAS script utilizes scikit-learn’s consistent, extensible interfaces for defining 555 

estimators and predictors and for initializing objects66. The script trains a stacked regression 556 

model using a modified version of scikit-learn’s StackingRegressor class, which trains a final 557 

estimator from cross-validated predictions from base estimators fitted on the full design matrix. 558 

The script defines two custom classes to be used as input for the stacking regressor object: a base 559 

estimator class (WeightEstimator) which converts trained GReX prediction models into scikit-560 

learn-compatible estimator objects and a final estimator class (ZetasEstimator) which obtains the 561 
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values of ��, … , �� that minimize the loss function under the constraints �� < 0 and ∑ ���
�
� �562 

114. 563 

During the stacked regression, SNP minor allele frequencies and effect sizes for the specified 564 

target are first read from each of the � user-specified weight files. The SNPs are then matched to 565 

SNPs in the validation genotype data and filtered to exclude effect sizes of SNPs for which the 566 

difference between the MAF of the genotype data and the MAF from the corresponding weight 567 

file exceeds a user-specified MAF difference threshold. The effect sizes from each weight file 568 

are used to initialize � separate instances of the WeightEstimator class. These � 569 

WeightEstimator objects are used as base estimators and fit on genotype and expression data 570 

from the validation data. 571 

Only SR-TWAS models trained from � � 2, 4, 6 base models are presented in this paper. The 572 

code was designed to accept any � < 2, and while the stacked regression script has been 573 

primarily tested using � � 2, 4, 6 base models, preliminary testing with dummy weight files 574 

confirms it can train stacked regression models from � ' 6 base models. 575 

 576 

ROS/MAP Reference Panel 577 

The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) are two 578 

ongoing longitudinal, epidemiologic clinical-pathologic cohort studies of aging and Alzheimer’s 579 

disease collectively referred to as ROS/MAP10. ROS enrolls Catholic nuns, priests, and brothers 580 

from religious groups across the United States, primarily from communal living settings10. While 581 

the similar adult lifestyle of participants allows for more control of potential confounders such as 582 

education and socioeconomic status, it simultaneously limits the ability to study such variables10. 583 
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MAP was designed to complement and extend studies like ROS by including subjects from a 584 

wider range of life experiences, socioeconomic status, and educational attainment and recruits 585 

participants primarily from retirement communities in the Chicago area, but also subsidized 586 

housing, retirement homes, and through organizations serving minorities and low-income 587 

elderly10. All participants in both studies are without known dementia and agree to annual 588 

clinical evaluations and brain donation upon death10. Similarity in study design and data 589 

collection procedures allows the ROS and MAP datasets to be merged for use in joint 590 

analyses10,67. 591 

Quality-controlled ROS/MAP WGS data for European subjects67 were used for both the real data 592 

application and simulation studies. Transcriptomic data of ROS/MAP samples of brain PFC were 593 

profiled by RNA-sequencing (RNA-seq). Gene expression data of Transcripts Per Million (TPM) 594 

per sample were provided by Rush Alzheimer’s Disease Center. Genes with ' 0.1 TPM in < 10 595 

samples were considered. Raw gene expression data (TPM) were then log2 transformed and 596 

adjusted for age at death, sex, postmortem interval, study (ROS or MAP), batch effects, RNA 597 

integrity number scores, cell type proportions (with respect to oligodendrocytes, astrocytes, 598 

microglia, neurons), top five genotype principal components, and top probabilistic estimation of 599 

expression residuals (PEER) factors68 by linear regression models. SNPs with minor allele 600 

frequency (MAF) > 1%, Hardy-Weinberg p-value ' 10�� were analyzed. For each gene, cis-601 

SNPs within the 1MB of the flanking 5’ and 3’ ends were used in the imputation models as 602 

predictors. 603 

 604 

GTEx V8 Reference Panel 605 
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The Genotype-Tissue Expression (GTEx) project V8 profiles both whole genome sequencing 606 

(WGS) genotype data and RNA-seq transcriptomic data for Brain PFC tissue type of n=157 607 

donors9. Gene expression data of Transcripts Per Million (TPM) per sample per tissue were 608 

downloaded from the GTEx portal. Genes with ' 0.1 TPM in < 10 samples were considered. 609 

Raw gene expression data (TPM) were then log2 transformed and adjusted for age, body mass 610 

index (BMI), top five genotype principal components, and top probabilistic estimation of 611 

expression residuals (PEER) factors68. SNPs with minor allele frequency (MAF) > 1%, Hardy-612 

Weinberg p-value ' 10�� were analyzed. For each gene, cis- SNPs within the 1MB of the 613 

flanking 5’ and 3’ ends were used in the imputation models as predictors. 614 

 615 

Simulation Study Design 616 

We conducted in depth simulation studies under various scenarios to assess the performance of 617 

SR-TWAS, Naïve method, and base models by PrediXcan and TIGAR. We used the real 618 

genotype data of gene ABCA7 from ROS/MAP and GTEx V8 to simulate gene expression and 619 

phenotypes. We considered three different settings: (i) Samples from ROS/MAP and GTEx 620 

cohorts have the same set of true causal SNPs (i.e., the same genetic architecture). The 621 

expression heritability was the same for both ROS/MAP and GTEx V8 cohorts. (ii) Samples 622 

from ROS/MAP and GTEx cohorts have the same set of true causal SNPs (i.e., the same genetic 623 

architecture). The expression heritability for GTEx V8 cohort is only half of the one for 624 

ROS/MAP. (iii) Samples from the ROS/MAP cohort were simulated with the same causal SNPs 625 

(i.e., eQTL), while samples from the GTEx V8 cohort were simulated with true causal SNPs that 626 

were 50% overlapped with the ones for ROS/MAP. The expression heritability was the same for 627 

both ROS/MAP and GTEx V8 cohorts. 628 
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Under each setting, we considered multiple scenarios with varying proportions of causal SNPs 629 

(*������ � 
0.001, 0.01, 0.05, 0.1�) and gene expression heritability (i.e., the proportion of gene 630 

expression variation due to genetics, +�
	 � 
0.1, 0.2, 0.5�). We randomly selected n=465 training 631 

samples with WGS genotype data from ROS/MAP and GTEx V8, respectively. We randomly 632 

selected n=400 and n=800 samples with WGS genotype data from ROS/MAP as our validation 633 

and test cohorts, respectively. We considered a series of +�
	  values, the proportion of phenotype 634 

variance due to simulated gene expression, in the range of 
0.05, 0.875�. 635 

For each scenario, gene expression �� for the >?+ simulation iteration is generated using the 636 

following formula 637 

�� � @�� A� � B� ,   @� � C +�
	

Var
� A•�� ,  B� 3 N D0, E1 � +�
	F, 

where �  denotes the genotype matrix of �causal randomly chosen true causal SNPs for all 638 

samples, effect size vector A" was generated from �
0, G�, and @�  is a scale factor chosen to 639 

ensure the targeted +�
	 value. The phenotype vector H�  for the >th simulation iteration was 640 

generated using the following formula  641 

H� � I��� � B� ,   I� � C +�
	

Var
��� ,   B� 3 N J0, K1 � +�
	L 

where �� is the simulated gene expression, and I�  is a scale factor to ensure the targeted +�
	  642 

value. 643 

Two base models per gene were trained by PrediXcan with the GTEx training samples (n=465), 644 

and by TIGAR with the ROS/MAP training samples (n=465). SR-TWAS and Naïve models 645 

were then obtained by using these trained base models. Validation data (- � 400) were used to 646 

train SR-TWAS models and filter out gene expression imputation models with 5-fold cross-647 
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validation �	 M 0.5% in the validation cohort for both SR-TWAS and Naïve models. Test data 648 

(n=800) were used for assessing GReX prediction performance and TWAS power. Each causal 649 

simulation scenario was repeated for 1,000 times. We compared the performance by SR-TWAS, 650 

Naïve method, and these two base models with respect to prediction imputation �	 in the test 651 

data and the power of TWASs. 652 

The predicted GReX&
�  by each trained gene expression imputation model was used to calculate 653 

expression prediction �	, which is equivalent to the regression �	 between profiled and 654 

predicted gene expression, given by  655 

�#�
	 � CorN�� , 8GReX&

�O	. 
The power will be given by the proportion of simulation iterations that have TWAS p-value 656 

M 2.5 1 10� out of a total of 1,000 simulation iterations. 657 

 658 

Data availability 659 

All ROS/MAP data analyzed in this study are de-identified and available to any qualified 660 

investigator with application through the Rush Alzheimer’s Disease Center Research Resource 661 

Sharing Hub, https://www.radc.rush.edu, which has descriptions of the studies and available 662 

data. GTEx V8 data are available from dbGaP with accession phs000424.v8.p2. TIGAR_GTEx 663 

base models trained from GTEx V8 are available at Synapse 664 

https://www.synapse.org/TIGAR_V2_Resource_GTExV8. PrediXcan_GTEx base models 665 

trained from GTEx V8 are available from https://predictdb.org/. GWAS summary data of AD are 666 

available from https://ctg.cncr.nl/software/summary_statistics, and GWAS summary data of PD 667 

are available from https://bit.ly/2ofzGrk. TIGAR_ROSMAP and PrediXcan_ROSMAP base 668 

models trained from ROS/MAP, trained SR-TWAS and Naïve models of brain PFC tissue type 669 
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in this study, and all TWAS summary statistics will be made available at SYNAPSE when the 670 

manuscript is accepted for publication. 671 

 672 

Code availability 673 

The SR-TWAS tool, including the Naïve method as an option, is publicly available on GitHub, 674 

https://github.com/yanglab-emory/SR-TWAS. 675 

  676 
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